• Menu
  • Skip to right header navigation
  • Skip to main content
  • Skip to primary sidebar

Before Header

  • Facebook
  • Instagram
  • Twitter
  • YouTube

Battles with Bits of Rubber

The Podcast about making Prosthetics

  • Leave us a message!
  • Home
  • Podcast Episodes
  • About
  • Shop
  • Search
  • Leave us a message!
  • Home
  • Podcast Episodes
  • About
  • Shop
  • Search

#58 – Air Bubbles

May 23, 2020 By //  by Stuart

Air bubbles of one kind or another are inevitable if you deal with materials which start out life as a liquid and then later solidify such as plaster, latex, silicone and resin. Let’s take a look at what can happen, why, and what to do about it.

Air bubbles can be small, almost insignificant cosmetic issues or more substantial structural weaknesses if large or inconveniently placed.

Most liquid materials usually require some kind of preparation involving stirring or agitation to blend catalysts, pigments or to simply shaken to recombine components in a container which may have separated over time.

This is usually where air is added into a mixture, and is difficult to avoid. If the material is low viscosity (runny), then usually the air introduced in mixing can rise and leave the material quicker than if the material is higher viscosity (thicker).


Tap here to download this set of notes about air bubbles.

To listen to the podcast, you can stream or download from here, or simply subscribe through your favourite podcast app – we are on many, including Spotify, Apple Podcasts, Soundcloud, IHeartRADIO , STITCHER , Luminary and Google Podcasts.

The other consideration is ‘pot life’, as many materials may set quickly, and this means a more fluid material which could allow added air bubbles to rise and escape will not do so for long before it starts to thicken and set – essentially trapping the air. To avoid lots of air bubbles therefore, the ideal combination is a runny material which doesn’t set too quickly.

This may mean modifying it…most silicones can be slowed down by adding a chemical retarder, or by refrigerating them beforehand. Perhaps in worse case scenarios when it is really toasty, you need to do both!

Materials will have an accompanying datasheet which will list its properties, and for liquid materials, one of them is to quantify the viscosity as a number, usually measured in ‘centipoise’ (cP).

The lower the number, the more fluid it is. For example, water is 1 to 5cP, honey is approx. 3000cP, Ketchup is about 60,000cP and peanut butter is about 200,000cP.

Degassing the mixture in a vacuum chamber (assuming there is time to do this process) is great if you have one, as this will remove the most amount of air by literally sucking it out.

The more fluid the mixture, the quicker and more easily it will degas. A good degasser will usually do its job in a few minutes, and the more powerful the pump, the better.

A mixture of silicone is placed in the degasser. Shortly after the pump begins sucking out the air, it causes the bubbles to swell and the level to rise as it expands.
Nearly up to -30 Hg (1 bar or about 14.5 PSI). Note how thick the clear lid is behind the dial – it has to be strong enough to withstand repeated exposure to the vacuum pressure.
There is a danger of the silicone overflowing this container, so the air valve is tweaked to let a little air in, shrinking the air bubbles. This ‘riding’ of the valve is an art form, and a good reason to have a much larger container (and vacuum chamber) than you think.
After 3 minutes of bubbling away, the vacuum is switched off and air allowed back so the silicone can be retrieved out of the chamber and poured (now relatvely free of air) to make a mould.

Taking the air out before pouring into the mould is the best thing you can do to prevent air bubbles in the first instance, but you’re not out of the jungle yet. You can still trap air in the mould with completely air-free silicone!

The other kind of air bubble is the ‘void’ usually created by air trapped in a high point in the mould, as the material gradually fills the space inside. Most of the air will usually get out, especially if the mould can be rotated carefully during the fill.

However sometimes in high points, like finer or ear tips, there will be a bubble of air which cannot escape or compress any further, preventing the casting material from making it in there.

Fingertips are classic places to catch air bubbles, and using pins or fine wire, like piano wire will make this step easier. A hand or arm mould for example, will usually be filled whilst upside down, so consider the position the piece will ultimately be cast in when deciding how to place risers and bleed holes.

You won’t know until the mould is opened, and then you can either repair the bubble or decide to pour another one. If you do, then you need to make a few changes to ensure it doesn’t happen again such as drilling/cutting small bleed holes or risers to allow the air to escape out from the high points.

This is best done during the moulding process by fitting thin wire into the points of the sculpt which will be the ‘high points’ for trapping air. Moulding with these in place, and then removing them afterwards will ensure a clean hole in the right place which is preferable to drilling than in afterwards.

Materials like silicone are hard to drill clean, and rigid materials can break drill bits (assuming there is a convenient place to position the drill which often there is not – in this instance length of piano wire may be a handy alternative.)

Small bubbles in the alginate will result in small raised bumps in the positive. These can usually be easily popped off with a small tool.
Bubbles in the plaster can be filled if not too extensive.
Big voids mean re-sculpting, which may lead to inaccurate positives.

There are two categories of moulds to consider – open and closed moulds. Open moulds include simple flat moulds or a simple bowl-like mould of a flared out neck for example (see below) which allows bubbles to easily escape.

Closed moulds are those consisting of an inner core and outer mould, which is assembled before the mould is filled. These kinds of moulds offer the greatest likelihood of air bubbles, so some thought should go into mould design to minimise the chances of doing so.

As silicone is a fluid, it will seek to become level. This means if moulds leak, either because they do not close properly or because of an unattended bleed hole, a mould which initially filled may then lose sufficient material to then create a bubble or void as it leaks out before setting.
This mould is assembled and closed before being filled from behind via a pour tube/syringe. You can see the crews used to block the bleed holes around near the edge to vent, allowing air to escape. When the silicone flows clear of air bubbles, it is usually a safe bet that it is time to close them up with the screws (so the silicone does not continue to flow out).
Hand tighten a half twist is usually plenty.
Although this kind of mould is closed because it is clamped shut, it is filled when open, the silicone being poured into the mould as if it were like a bowl. The air is less likely to get trapped before the core is inserted and clamped.
An example of air bubbles in the silicone piece as seen from behind, trapped just behind the edge.

Many thanks, as always, for your time checking the stuff out. You can email us directly at stuartandtodd@gmail.com or leave us a voice message on our site.

If you enjoy this podcast and got something out of it, would you do us a solid and tell just one more person about us? Send them a link and help us grow!

–Stuart & Todd

To listen to the podcast, you can stream or download from here, or simply subscribe through your favourite podcast app – we are on many, including Spotify, Apple Podcasts, Soundcloud, IHeartRADIO , STITCHER , Luminary and Google Podcasts.


Share this post:

Share on Twitter Share on Facebook Share on Pinterest Share on LinkedIn Share on E-mail

Filed Under: Podcast

Previous Post: « #57 – ‘Little John’ Cormican
Next Post: #59 – Mark Donovan »

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Primary Sidebar

Subscribe to the podcast:

LibsynSpotifyApple PodcastsGoogle PodcastsPlayer.fmPocketCastsStitcherPodbeanListen NotesiHeartRadioSoundCloudPodtailThe Podcast AppOwlTailPodbayMyTuner RadioOvercastLuminary

The latest podcasts:

  • #90 – Joel Harlow: Stories In The Skin
  • #89 – Maddie Scott-Spencer
  • #88 – Adam ‘KreatureKid’ Dougherty
  • #87 – Frank Ippolito
  • #86 – More Noses, Fewer Horns

Copyright © 2023 · Powered by Mai Lifestyle Pro On Genesis Framework · Log in